3.735 \(\int \frac{x}{\sqrt{a+b x} \sqrt{c+d x}} \, dx\)

Optimal. Leaf size=75 \[ \frac{\sqrt{a+b x} \sqrt{c+d x}}{b d}-\frac{(a d+b c) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{b^{3/2} d^{3/2}} \]

[Out]

(Sqrt[a + b*x]*Sqrt[c + d*x])/(b*d) - ((b*c + a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(
b^(3/2)*d^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0422881, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {80, 63, 217, 206} \[ \frac{\sqrt{a+b x} \sqrt{c+d x}}{b d}-\frac{(a d+b c) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{b^{3/2} d^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[a + b*x]*Sqrt[c + d*x]),x]

[Out]

(Sqrt[a + b*x]*Sqrt[c + d*x])/(b*d) - ((b*c + a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(
b^(3/2)*d^(3/2))

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{\sqrt{a+b x} \sqrt{c+d x}} \, dx &=\frac{\sqrt{a+b x} \sqrt{c+d x}}{b d}-\frac{(b c+a d) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{2 b d}\\ &=\frac{\sqrt{a+b x} \sqrt{c+d x}}{b d}-\frac{(b c+a d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{b^2 d}\\ &=\frac{\sqrt{a+b x} \sqrt{c+d x}}{b d}-\frac{(b c+a d) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{b^2 d}\\ &=\frac{\sqrt{a+b x} \sqrt{c+d x}}{b d}-\frac{(b c+a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{b^{3/2} d^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.158356, size = 110, normalized size = 1.47 \[ \frac{b \sqrt{d} \sqrt{a+b x} (c+d x)-\sqrt{b c-a d} (a d+b c) \sqrt{\frac{b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )}{b^2 d^{3/2} \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[a + b*x]*Sqrt[c + d*x]),x]

[Out]

(b*Sqrt[d]*Sqrt[a + b*x]*(c + d*x) - Sqrt[b*c - a*d]*(b*c + a*d)*Sqrt[(b*(c + d*x))/(b*c - a*d)]*ArcSinh[(Sqrt
[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]])/(b^2*d^(3/2)*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [B]  time = 0.015, size = 148, normalized size = 2. \begin{align*} -{\frac{1}{2\,bd} \left ( \ln \left ({\frac{1}{2} \left ( 2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) ad+\ln \left ({\frac{1}{2} \left ( 2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) bc-2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd} \right ) \sqrt{bx+a}\sqrt{dx+c}{\frac{1}{\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }}}{\frac{1}{\sqrt{bd}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x+a)^(1/2)/(d*x+c)^(1/2),x)

[Out]

-1/2*(ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a*d+ln(1/2*(2*b*d*x+2*((b*x+
a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*b*c-2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2))*(b*x+a)^(1/2)*(
d*x+c)^(1/2)/b/(b*d)^(1/2)/d/((b*x+a)*(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.93597, size = 563, normalized size = 7.51 \begin{align*} \left [\frac{4 \, \sqrt{b x + a} \sqrt{d x + c} b d +{\left (b c + a d\right )} \sqrt{b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} - 4 \,{\left (2 \, b d x + b c + a d\right )} \sqrt{b d} \sqrt{b x + a} \sqrt{d x + c} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right )}{4 \, b^{2} d^{2}}, \frac{2 \, \sqrt{b x + a} \sqrt{d x + c} b d +{\left (b c + a d\right )} \sqrt{-b d} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{-b d} \sqrt{b x + a} \sqrt{d x + c}}{2 \,{\left (b^{2} d^{2} x^{2} + a b c d +{\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right )}{2 \, b^{2} d^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(b*x + a)*sqrt(d*x + c)*b*d + (b*c + a*d)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*
d^2 - 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x))/(b^2*d^2), 1/2
*(2*sqrt(b*x + a)*sqrt(d*x + c)*b*d + (b*c + a*d)*sqrt(-b*d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(
b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)))/(b^2*d^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{a + b x} \sqrt{c + d x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)**(1/2)/(d*x+c)**(1/2),x)

[Out]

Integral(x/(sqrt(a + b*x)*sqrt(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.26467, size = 128, normalized size = 1.71 \begin{align*} \frac{\frac{{\left (b c + a d\right )} \log \left ({\left | -\sqrt{b d} \sqrt{b x + a} + \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt{b d} d} + \frac{\sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \sqrt{b x + a}}{b d}}{{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

((b*c + a*d)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*d) + sqrt(b^2
*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)/(b*d))/abs(b)